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Abstract

Instability of the condensate ®lm in a small-diameter-tube condenser was investigated by using an integro-
di�erential approach. The disturbance wave parameters were predicted based on the characteristic equation derived

in this study, and the results were in good agreement with the available experimental data reported in the literature.
Capillary blocking taking place in a small-diameter-thermosyphon condenser was also examined. The proposed
mechanism for capillary blocking reasonably explains the observed two-phase-¯ow phenomena during formation of
capillary blocking. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Convective condensation in tubes is encountered in

many applications, such as air-conditioning, refriger-

ation, and heat-pipe condensers, etc. The concurrent

two-phase-¯ow patterns that typically occur during the

condensation process in air-conditioning and refriger-

ation condensers are annular ¯ow, slug ¯ow, plug

¯ow, and bubbly ¯ow [1]. At low to moderate conden-

sation pressures, the annular ¯ow dominates the con-

densation process and only a small portion of the ¯ow

is of other two-phase patterns. Thus, the condensation

heat transfer is primarily associated with the annular

¯ow. While in condensers of gravity-assisted heat

pipes, i.e., thermosyphons (where the two-phase ¯ow

in opposite directions), the annular ¯ow is the usual

two-phase-¯ow pattern. Owing to either the hydrody-

namic force or surface tension, the inner surface of the

annular condensate ®lm is inherently unstable and sur-

face waves will form at the vapor±liquid interface [2],

resulting in a complicated, unstable ¯ow pattern in the

condensate ®lm. In a large-diameter tube where the

capillary force is small, the unstable surface waves are

caused by the hydrodynamic force, i.e., Kelvin±

Helmholtz instability. If the condensate ®lm is thick,

then the unstable waves may induce liquid bridging [3±

5]. On the other hand, in a small-diameter tube where

the capillary force becomes signi®cant, the unstable

surface waves are due primarily to Rayleigh instability

except for cases with a large phase-velocity di�erence.

Two distinctive capillary ¯ows may be encountered in

small-diameter-tube condensers (shown in Fig. 1): if

the condensate ®lm is thin, the surface deformation of

the condensate ®lm may lead to a capillary-collar ¯ow;

if the condensate ®lm is thick, the instability of the

condensate ®lm may cause liquid bridging, which cuts

the vapor core into bubbles, resulting in a capillary-

bubble ¯ow [1,6,7].

These aforementioned liquid bridgings may be

encountered in both concurrent and countercurrent

condensers. In large-diameter (either concurrent or
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Nomenclature

a undisturbed radius of inner surface of condensate ®lm
A cross-sectional area of condensate ®lm
Acollar vapor±liquid interface area of condensate collar

C mean curvature of condensate collar
g gravitational acceleration
k disturbance wavenumber (02p/l )
lbridge width of liquid bridge
L latent heat
m ®lm-thickness parameter (0r 20/a

2ÿ1)
n ®lm-thickness parameter [01ÿ3R 2+(4R 4 ln R )/m ]
nj projection of unit outward normal in jth-direction
p pressure
r0 tube radius

rB mean radius of the bottom vapor±liquid interface of liquid bridge
rs disturbed radius of inner surface of condensate ®lm
rT mean radius of the top vapor±liquid interface of liquid bridge

R ®lm-thickness parameter (0r0/a )
S surface area of the condensate ®lm
t time

tb wave-breakup time
T temperature
ui velocity component in ith-direction

uÃ component of vapor-velocity vector induced by surface disturbance
uÃv velocity vector for vapor
U prescribed vapor core velocity
V volume of condensate ®lm

Vcollar volume of condensate collar
WÃ e Weber number �� 2ar̂U 2=s�
Z modi®ed Ohnesorge number [0(3+R 2)m/(2ars )1/2]

Greek symbols
a disturbance amplitude
a0 initial disturbance amplitude
b dimensionless growth rate in amplitude [0o(2ra 3/s )1/2]
d thickness of condensate ®lm
Eij strain-rate tensor
Z dimensionless wavenumber (0ka )

k thermal conductivity
l disturbance wavelength
m viscosity

r density
s surface tension
tij stress tensor
f velocity potential

o dimensional growth rate in amplitude

Subscripts
cr critical property of condensate collar

m property of most-unstable wave
s property at interface

Index
( Ã ) property of vapor phase
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countercurrent ¯ow) condensers and small-diameter

concurrent-¯ow condensers, liquid bridges usually do
not block the ¯ow because either liquid bridges are un-
stable and break up due to the hydrodynamic force (in

countercurrent ¯ows) or bubbles between liquid
bridges are converted rapidly into liquid due to con-

densation heat transfer (in concurrent ¯ows). However,
in the condenser of a small-diameter thermosyphon,

i.e., a countercurrent ¯ow condenser with a dead end,
liquid bridges resulting from the condensate-®lm

instability may severely a�ect working conditions of
the thermosyphon if the driving force for the conden-
sate ¯ow is not large enough to overcome the ¯ow re-

sistance. As a result, a liquid plug may form and block
the dead end of the condenser (this phenomenon is

known as capillary blocking), which, in turn, may
result in partial dryout in the evaporator because the

blocked working ¯uid cannot return to the evaporator.
Capillary blocking in condensers of small-diameter

thermosyphons has been reported by [8,9]. VasilyÂ ev et
al. pointed out that capillary blocking may occur com-

monly in thermosyphon condensers if the tube diam-
eter is small and the condensate ®lm is thick. A

theoretical investigation of capillary blocking in a
small-diameter-thermosyphon condenser was reported
previously by [8]. Their analysis was based on the

assumptions that no surface waves are formed at the
vapor±liquid interface and that capillary blocking is

due to the condensate ®lm merger. However, these
assumptions may be challenged on the basis of exper-

imental observations [6,9±12] that the inner surface of
the annular liquid ®lm in a tube is always unstable

which induces surface waves at the inner surface of the
®lm, and that instability of the surface waves often

result in multiple liquid bridges which cannot be
explained by the mechanism of the condensate ®lm
merger. In addition, with an appropriate charging rate

of the working ¯uid, ®lm merger may not occur any-
where in a thermosyphon. Therefore, capillary block-

ing most probably is caused by liquid bridging. To
date, little work on instability of the condensate ®lm in

small-diameter-tube condensers has been reported in
the literature.

Recently, micro heat pipes (both with wick and
wickless) show considerable promise for the cooling of

electronic equipment [13,14]. Although the majority of
the wickless micro heat pipes have a polygonal cross

section, cylindrical vapor±liquid interface and some
phenomena that occur in a small-diameter-thermosy-

phon (such as the formation of a liquid plug at the
dead end of the condenser and partial dryout in the
evaporator) are also encountered in these micro heat

pipes [13,14]. Therefore hydrodynamic behavior of the
condensate in a small-diameter-thermosyphon may
also re¯ect some characteristics of that in wickless

micro heat pipes. The objectives of this study are: (1)
to analyze instability of the annular condensate ®lm in
a tube which is encountered in both concurrent ¯ow
and countercurrent condensers, and (2) to examine the

mechanism for capillary blocking which occurs in
small-diameter-thermosyphon condensers.
There are essentially two theoretical approaches that

can be used to study the capillary instability: the ®rst
one is the integro-di�erential approach by Rayleigh
[2,15], and the second one is the conventional

approach of solving the complete set of the di�erential
equations [10]. In the present work, we will adopt
Rayleigh's approach because it will lead to a character-
istic equation that is explicit and the real form. This

characteristic equation, in the limiting cases of low
vapor velocities and high vapor velocities, will be
examined. Applications to capillary blocking in a

small-diameter-thermosyphon condenser will be illus-
trated.

2. Instability of the condensate ®lm in a tube

In this section, we will analyze instability of the con-
densate ®lm in a tube and derive a characteristic
equation describing stability or instability of the dis-

turbance waves that may form on the condensate ®lm.

2.1. Governing equations

The ¯ow system under study is an axisymmetric, vis-
cous annular condensate ®lm on the inner surface of a
cylindrical tube of radius r0, and a vapor core in the

center of the tube (shown in Fig. 2). Since the dis-
turbed ¯ow of the condensate is of interest, for simpli-
city, both the liquid and vapor phases are assumed to

move at their phase velocities. Since only the di�erence
in phase velocities in¯uences instability of the conden-
sate ®lm, a cylindrical polar system is chosen that

Fig. 1. Selected two-phase-¯ow patterns in small-diameter-tube condensers: (a) capillary-collar ¯ow; (b) capillary-bubble ¯ow.
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translates with the phase velocity of the condensate
®lm (note that the phase velocity of the condensate
®lm is very low in a small-diameter tube); thus, any

other motions in the condensate ®lm may be assumed
to be insigni®cant in comparison to that induced by
surface disturbances. Because the phenomenon under

consideration is periodic along the length of the tube,
only a single wavelength will be considered. Because
that changes in thickness of the condensate ®lm and
the vapor velocity are very small over one wavelength,

we may assume that the thickness of the condensate
®lm is constant and that the vapor core has an undis-
turbed radius a and a prescribed uniform (relative) vel-

ocity U. It is further assumed that heat and mass
transfer a�ect the ®lm instability only indirectly via the
®lm thickness and that both the condensate and the

vapor are Newtonian ¯uids and incompressible. In ad-
dition, we may assume that the in¯uence of the gravi-
tational force on the ®lm instability may be neglected
in comparison to that of interfacial forces for small-di-

ameter tubes.
Following an approach employed by Rayleigh [2,15]

to study the instability of cylindrical ¯uid surfaces, we

examine the condensate-®lm instability via an energy
balance on the ®lm on the inner surface of the tube
[16,17]:

�
V

@

@ t

�
1

2
ruiui

�
dV �

�
S

tijuinj dSÿ
�
V

tijEij dV �1�

where V and S represent the volume and surface area
of the ®lm, t the time, r the density of the condensate,
ui the velocity component in the ith-direction, tij the
stress tensor, nj the projection of the unit outward nor-
mal in the jth-direction, and Eij the strain-rate tensor.
In Eq. (1), the left-hand-side represents the rate of

increase in kinetic energy of the ®lm while on the
right-hand-side, the ®rst term is the rate at which work
is performed on the ®lm, and the second term is the

rate of energy dissipation in the ®lm. The surface inte-
gral in Eq. (1) requires that the interfacial condition
and motion of the vapor core be known. Since no

work is performed at the outer surface of the annular
condensate ®lm, only work done at the vapor±liquid

interface will be considered. The velocity and stress-
tensor components in the surface integral in Eq. (1)
must satisfy the following interfacial conditions [18]

along the vapor±liquid interface:

kinematic conditions

urs � ûrs, uzs � ûzs �2�

dynamic conditions

trrs ÿ t̂rrs � s�1=rs � �@ 2rs=@z2�=�1� �@rs=@z�2�3=2

ÿ 1=a� �3�

and

trzs ÿ t̂rzs10 �4�

where the caret signi®es properties of the vapor phase,
the subscript s denotes properties at the interface, rs is
the disturbed radius of the inner surface of the ®lm,

and s is the surface tension. The motion of the vapor
core may be described by the momentum and the con-
tinuity equations:

@ Ãu v

@ t
� Ãu v � r Ãu v � ÿ1

r̂
rp̂� m̂

r̂
r2 Ãu v �5�

r � Ãu v � 0 �6�

where uÃv=Unz+uÃ is the vapor velocity, with nz being
the unit vector in the z-direction and uÃ being the vel-
ocity vector induced by the disturbance wave; pÃ and m
are, respectively, the pressure and viscosity of the
vapor phase.
The stress-tensor components for the vapor core

given in Eqs. (3) and (4) can be written as t̂rrs �
ÿp̂� 2m̂�@ ûr=@ r�s and t̂rzs � m̂�@ ûz=@r� @ ûr=@z�s. At
low to moderate pressures, the viscosity of the vapor

phase is much smaller than that of the corresponding
liquid phase for a given ¯uid, i.e., m� m̂. Thus, viscous
stresses in the condensate ®lm are much larger than in

the vapor core. Therefore, Eqs. (3) and (4) may be ap-
proximated as

trrs1ÿ p̂� s�1=rs � �@ 2rs=@z2�=�1� �@rs=@z�2�3=2

ÿ 1=a� �7�

trzs10: �8�

Eq. (8) implies that for the disturbed ¯ow in the vapor
core, the viscous term may be neglected. Following the
usual practice in the analysis of ¯uid ¯ow in a cylindri-

Fig. 2. Flow system con®guration.
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cal tube, we assume that variations in pressure across
the vapor core may be neglected, i.e., v@pÃ/@rv<<v@pÃ/@zv.
Furthermore, we assume that U>>uÃz, uÃr; thus, uÃ vz>>
uÃ vr=uÃr and uÃv�HuÃv 1 Unz�HuÃ. Based on the preceding,
Eq. (5) may be reduced to

@ ûz
@ t
�U

@ ûz
@z

1ÿ 1

r̂
@ p̂

@z
: �9�

It follows that the induced ¯ow in the vapor core can
be modeled as a potential ¯ow, uÃ=Hf, where f is a
velocity potential. Note that in this case,

H�uÃv=H�uÃ=H�Hf=H2f=0; i.e., Eq. (6) becomes the
Laplace equation:

@ 2f
@r2
� 1

r

@f
@r
� @

2f
@z2
� 0: �10�

Substituting uÃz=@f/@z into Eq. (9) and integrating
with respect to z yields

@f
@ t
�U

@f
@z
� ÿ p̂

r̂
: �11�

2.2. Characteristic equation for condensate-®lm
instability

If the vapor±liquid interface is initially perturbed
in®nitesimally and deformation of the interface is
assumed to be sinuous; the radius of the disturbed

interface can be described as [15,19,20]:

rs � a� a cos kz �12�
where a is the undisturbed radius of the inner surface
of the condensate ®lm a=a0 eot is the disturbance
amplitude with a0 being the amplitude of the initial

disturbance, o the growth rate in amplitude, and k the
disturbance wavenumber.
To determine the volume integrals in Eq. (1), the

condensate ®lm is modeled as a one-dimensional

Cosserat continuum [21]; thus,

@A

@ t
� @ �Auz�

@z
� 0 �13�

where A=p(r 20ÿr 2s) is the cross-sectional area of the
condensate ®lm. Eq. (13) yields the following ex-

pression:

ur � a0o eo t cos kz

am
r

�
r20
r2
ÿ 1

�
�14�

where Z0ka and m0r 20/a
2ÿ1 (m$0). Continuity for

the condensate ®lm yields

uz � ÿ2a0o eo t

Zm
sin kz: �15�

Substituting the above expressions for ur and uz to the
kinetic-energy and energy-dissipation terms in Eq. (1)

gives:�
V

@

@ t

�
1

2
ruiui

�
dV � p2a20ra

3o 3 e2o t

2Z3m
�8� nZ2� �16�

�
V

tijEij dV � p2a20amo
2 e2o t

2mZ
�24� 8R� nZ2� �17�

where n0 1ÿ3R 2+(4R 4 ln R )/m and R0 r0/a. The
above integration was performed over a single wave-
length, i.e., between z=0 and 2p/k. The work term in
Eq. (1) may be approximated as (note that only the

terms normal to the interface are of interest)�
S

tijuinj dS1
�
S

trrurnr dS�
�
S

trzuznr dS: �18�

Substituting Eqs. (7) and (8) into Eq. (18) and noting

that the outward normal of the ®lm is opposite that of
the vapor core gives�
S

tijuinj dS1
�
S

p̂urdSÿ
�
S

s�1=rs � �@ 2rs=@z2�=

�1� �@rs=@z�2�3=2 ÿ 1=a�ur dS

�19�

where we have used the interfacial conditions given by
Eqs. (2)±(4). With the aid of Eqs. (12) and (14), the

second term on the right-hand-side of Eq. (19)
becomes�
S

s�1=rs � �@ 2rs=@z2�=�1� �@rs=@z�2�3=2 ÿ 1=a�ur

dS � ÿ2p2a20o e2o ts�1ÿ Z2�=Z:
�20�

Solving for f from Eq. (10) subject to interfacial con-

ditions given by Eqs. (2), (7) and (8), and substituting
f into Eq. (11) and rearranging, yields

p̂ � ÿa0

eo t I0�kr�
I1�Z�

�
o 2r̂
k

cos kzÿ 2r̂Uo sin kzÿ r̂U 2k

cos kz

� �21�

where I0 and I1 are zeroth- and ®rst-order modi®ed

Bessel functions of the ®rst kind. Substituting Eqs. (21)
and (15) into the ®rst term on the right-hand-side of
Eq. (19) gives
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�
S

p̂ur dS � 2p2a20 e2o tr̂
Z2

I0�Z�
I1�Z� �ÿa

3o 3 � aoU 2Z2�: �22�

Substituting Eqs. (16), (17), (20) and (22) into Eq. (1)

yields the following dimensionless characteristic
equation for the condensate-®lm instability:�
1� 4mZ

8� nZ2
r̂
r

I0�Z�
I1�Z�

�
b2 � 2ZZ2b

� 8mZ2
1ÿ Z2

8� nZ2
� 4mŴe

Z3

8� nZ2
I0�Z�
I1�Z� �23�

where b 0 o(2ra 3/s )1/2 is the dimensionless growth
rate in amplitude, Z0(3+R 2)m/(2ars )1/2 is a modi®ed

Ohnesorge number (a dimensionless parameter rep-
resenting the ratio of viscous to surface-tension forces)
for the condensate, and Ŵe � 2ar̂U 2=s is the Weber

number (a dimensionless parameter describing the rela-
tive importance of hydrodynamic to surface-tension
forces) based on the vapor phase. The condensate ®lm
is unstable whenever b>0(o>0). In Eq. (24), the sec-

ond term in the coe�cient for b 2 indicates the in¯u-
ence of the vapor±liquid density ratio on the ®lm
instability; the coe�cient for b denotes the e�ect of the

viscosity on the ®lm instability; the ®rst and second
terms on the right-hand-side represent the sources of
instability, i.e. surface tension and the hydrodynamic

forces, respectively. It is relevant to note that Eq. (23)
is an explicit equation for the determination of b. If
we have used the conventional approach [10], the

characteristic equation would be implicit and in com-
plex form which is much more di�cult to solve.

3. Disturbance waves on the condensate ®lm

According to Rayleigh's linear instability theory
[22], from an initial disturbance a number of unstable
waves may form at the vapor±liquid interface. The

wave controlling the shape of the inner surface of the
condensate ®lm in a tube is the one having the maxi-
mum growth rate in amplitude, i.e., `the most-unstable

wave'. In this section, the most-unstable wave and the
parameters that in¯uence the most-unstable wave will
be analyzed.

3.1. Case of low vapor velocities

The vapor velocity is changing along the tube during

the condensation process, especially in heat-pipe con-
densers. In a small-diameter-thermosyphon, the vapor
velocity is low in most parts of the condenser because

in the dead-end zone of the condenser the vapor is
almost stagnant. At low vapor velocities, WÃ e4 0; thus,
Eq. (23) reduces to

�
1� 4mZ

8� nZ2
r̂
r

I0�Z�
I1�Z�

�
b2 � 2ZZ2b

� 8mZ2
1ÿ Z2

8� nZ2
: �24�

In this case, b>0 whenever Z< 1 (i.e., l>2pa ); thus,
at low vapor velocities, instability of the condensate
®lm is induced by long disturbance waves. For ®lm

thickness of the practical interest, RR 2; thus, m, n<
4. Noting that r̂=r� 1, I0(Z )/I1(Z ) 1 2/Z and nZ 2<<8
for Z<1, Eq.(24) can be reduced to

b2 � 2ZZ2b � mZ2�1ÿ Z2�: �25�

It is seen from Eq. (25) that the Ohnesorge number Z

has a damping e�ect on the ®lm instability because b
4 0 as Z 4 1. The most-unstable wavenumber Zm
may be determined by applying the condition db/
dZvZm=0 to Eq. (25) to give:

Zm �
" ����

m
p

2� ����
m
p � Z �

#1=2

: �26�

Eq. (26) implies that, in general, the condensate-®lm
instability is dependent on ®lm thickness (a ) and vis-
cosity of the condensate (u ).

Most of the working ¯uids used in phase-change
heat exchangers are of low-viscosity. For such ¯uids
(e.g., water and refrigerants), Z is of order of 10ÿ2 or
less if RR 2. Thus, in practice

����
m
p � Z. Therefore, for

the condensate ®lm in a tube, Eq. (26) becomes

Zm � 1=
���
2
p
� 0:707: �27�

Eq. (27) shows that for low vapor velocities, the most-
unstable wavenumber is approximately constant, inde-
pendent of ®lm thickness and ¯uid properties of either

phase. Instability of an annular viscous-liquid ®lm in a
small-diameter tube with a stagnant gas core was
investigated experimentally as well as numerically by

[10]. The measured disturbance wavenumbers fell in a
range between 0.57 and 0.70 with 1.1 < R<1.6, hav-
ing an average value Z=0.65 and no obvious ®lm-

thickness in¯uence was evident. The prediction of this
study is in good agreement with the measurement with
the average di�erence between the prediction of this
study and the experimental data being only 9%. The

result of this study agrees excellently with Goren's nu-
merical solutions of his implicit, complex characteristic
Eq. [10]: the maximum di�erence in the range of R for

which Goren investigated is less than 7%.

3.2. Case of high vapor velocities

Vapor velocities in the zone connecting with the
adiabatic section in the condenser and in the evapor-
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ator of a thermosyphon are higher than in the dead-
end zone of the condenser. In these zones, both the

maximum growth rate and the most-unstable wave-
number are functions of all of the parameters in Eq.
(23). As was mentioned previously, values of the modi-

®ed Ohnesorge number may be very small for the
working ¯uids used in phase-change heat exchangers;
thus, the damping e�ect (i.e. the second term) in Eq.

(23) may be neglected. It follows that b can be solved
from Eq. (23) as

b � �F1 � F2�1=2=F 1=2
3 �28�

where

F1 � 8mZ2
1ÿ Z2

8� nZ2

F2 � 4mŴe
Z3

8� nZ2
I0�Z�
I1�Z�

and

F3 � 1� 4mZ
8� nZ2

r̂
r

I0�Z�
I1�Z�

represent the in¯uences of surface tension, the hydro-

dynamic force, and the vapor±liquid density ratio on
the growth rate, respectively. Eq. (28) shows that b
increases as F2 (F2r0) increases, and b41 as F24
1, i.e., the hydrodynamic force has a destabilizing
e�ect; b decreases as F3 (F3r0) increases and b4 0 as
F3 41, i.e., the density ratio has a stabilizing e�ect.
At high vapor velocities, the e�ect of surface tension

on ®lm instability is wavenumber dependent: if Z< 1,
then F1>0, i.e., surface tension destabilizes the con-
densate ®lm; if Z>1, then F1 < 0, i.e., surface tension

has a stabilizing in¯uence.
A numerical analysis based on Eq. (28) indicates

that both the maximum growth rate bm and the most-

unstable wavenumber Zm increase as WÃ e increases.
Thus, the disturbance waves in high vapor-velocity
zones are shorter and grow faster than those in low

vapor-velocity zones. The ®lm thickness in¯uences
both bm and Zm only limited at given values of r̂=r
and WÃ e. For example, at r̂=r � 0:001 and WÃ e=10, the
most-unstable wavenumber Zm varies between 3.6 and

3.8 over a range R=1.2±1.5. The dependence of the
maximum growth rate bm on ®lm thickness at r̂=r �
0:001 and WÃ e=10 is presented in Table 1. It is seen

from this table that the maximum growth rate varies
with ®lm thickness only slightly. However, for a given
Weber number, the bm=bm(R ) relationship results in

a critical thickness at which the disturbance wave
grows most rapidly (in Table 1, the critical thickness
occurs at R=1.49).

In comparison with that at low vapor velocities, the
vapor±liquid interface at high vapor velocities is often
irregular because disturbance waves break up easily

due to a large hydrodynamic interfacial force.
However, in reality, breakup of the condensate ®lm
due to the hydrodynamic force occurs seldomly in

small-diameter-tube condensers albeit it is encountered
in the evaporators where the hydrodynamic force may
be much larger than the capillary force. The mechan-

ism for breakup of disturbance waves due to the hy-
drodynamic force is very complicated [23±25]. Detailed
discussions may be found in [25]. To date, no exper-

iments on the modes of most-unstable waves for high
vapor velocities have been reported. Thus, comparison
of this study with experiments is currently not avail-
able.

4. Discussion: interfacial phenomena in capillary

condensation

As mentioned in the `Introduction', liquid bridging

caused by breakup of the condensate ®lm may induce
capillary blocking in small-diameter-thermosyphon
condensers. Breakup of the condensate ®lm, liquid

bridging, and capillary blocking in small-diameter-ther-
mosyphon condensers are all originated from the capil-
lary instability. A condensation process that is
associated with various capillary phenomena may be

characterized as capillary condensation. In this section,
we will discuss the interfacial phenomena in capillary
condensation taking place in a small-diameter-thermo-

syphon condenser.

4.1. Breakup of the condensate ®lm

In a thermosyphon, the condensate ¯ows to the
evaporator from the dead end of the condenser while
the vapor ¯ows to the dead end of the condenser from

the evaporator. Because of the vapor condensation, the
condensate ®lm thickens during its downward ¯ow. It
has been discussed that deformation of the condensate

®lm is governed by the most-unstable wave at the
vapor±liquid interface. According to Eq. (13), the dis-
turbed radius of the inner surface of the condensate

®lm in a small-diameter-thermosyphon condenser may
be expressed as

rs � a� a0 eomt cos �2pz=lm� �29�

Table 1

Selected values for bm=bm(R ) at r̂=r � 0:001 and WÃ e=10

R 1.30 1.40 1.48 1.49 1.50 1.60 1.70

bm 7.628 7.968 8.045 8.047 8.046 7.986 7.855
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where om is the dimensional maximum growth rate

and lm(02pa/Zm) is the most-unstable wavelength.

Since the vapor velocity and the thickness of the con-

densate ®lm are di�erent in di�erent zones in the con-

denser, characteristics of disturbance waves may also

be di�erent. In the upper part of the condenser (i.e.,

the dead-end zone), the vapor is almost stagnant and

the condensate ®lm is thin; thus, the growth rate and

wavelength of the disturbance wave can be determined

from Eqs. (25) and (27) as om=[(R 2ÿ1)s/(8ra 3)]1/2

and lm �
���
8
p

pa. While in the lower part of the conden-

ser (i.e., the zone near the adiabatic section), the vapor

velocity is relatively high and the condensate ®lm is

thick. Therefore, om and lm need to be solved from

Eqs. (28) or (23). Based on the preceding analysis and

Eq. (29), disturbance waves in the lower part of the

condenser are shorter and grow faster than those in

the upper part. (Considering that the Weber number is

de®ned on the vapor phase, if the condensation press-

ure is low, then the hydrodynamic force in a small-di-

ameter-tube condenser may not in¯uence the most-
unstable wavenumber signi®cantly; thus, in the entire

condenser, lm1
���
8
p

pa.)
From the previous assumption, disturbance waves

grow sinuously (an implication of this assumption is

that the nonlinear e�ect due to ®nite initial disturb-

ances on development of disturbance waves is neg-
lected). Development of a disturbance wave then may

be described by Eq. (29) with r=a being the equi-

librium position and cos (2pz/lm)=2 1 denoting the

trough and crest of the disturbance wave. Growth of a

disturbance wave is restrained by two limits. One limit

occurs when the wave trough reaches the tube wall. At

this limit, the condensate ®lm breaks up into a liquid

collar (shown in Fig. 3). Under the sinuous-growth

assumption, the thickness of the condensate ®lm at the

wave crest is, approximately, twice of the undisturbed

condensate-®lm thickness. Thus, the disturbed radius
at the wave crest is rs,crest=r0ÿ2(r0ÿa )=a(2ÿR ) and

the corresponding wave-breakup time is tb=(1/om)

ln [(a/a0)(Rÿ1)]. In this limiting case, rs,crest>0 (i.e., R

< 2) and rs,trough 4 r0. The other limit takes place at

the condition Rr2. At this limit, the wave crest meets

the center line of the tube, i.e., rs,crest=0, rs,trough R r0
and the wave-breakup time is tb=(1/om) ln (a/a )
(noting that the relationship rs,crest=a(2ÿR ) does
not apply to the case R>2). The surface energy of a

liquid collar is larger than that of a liquid bridge of
the same volume; thus, once the wave crest from both
sides contacts at the center line of the tube, the liquid

collar breaks up into a liquid bridge. The minimum
thickness of the undisturbed ®lm for this limiting case
is d=r0/2 (i.e., R=2). However, if the nonlinear e�ect
on the wave development is not negligible, then liquid

bridging may also occur at the condition R<2 [6].
Characteristics of disturbance waves suggest that

breakup of the condensate ®lm in a small-diameter-

thermosyphon condenser may have di�erent patterns
in di�erent zones in the condenser. In the upper part
of the condenser where the thickness of the condensate

®lm is less than r0/2, the condensate ®lm may break up
into liquid collars, while in the lower part of the con-
denser where the thickness of the condensate ®lm

reaches r0/2, liquid bridges may be produced from the
®lm breakup.

4.2. Breakup of condensate collars

Formation of the ®rst liquid bridge from the ®lm
instability in the lower part of the condenser blocks

the vapor transport to the upper part of the condenser.
It also induces a large capillary resistance to the con-
densate transport to the evaporator because the capil-

lary force at the top vapor±liquid interface of the
liquid bridge tends to prevent the condensate from
¯owing to the evaporator. Since its thickness is less
than r0/2, as discussed previously, the condensate ®lm

blocked may break up into liquid collars. Because of
the vapor condensation, the tube wall between two
liquid collars is always wetted with a thin ®lm of the

condensate. Since the condensate forming liquid collars
is subcooled due to hysteresis in returning to the evap-
orator, the vapor blocked in the space above the liquid

bridge will condense continuously which causes
increase in volume of liquid collars. The volume of a
liquid collar may be expressed as

Fig. 3. A condensate collar in the condenser.
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Vcollar � p
�lm

0

�r20 ÿ r2s � dz �30�

where rs is given by Eq. (29) and the disturbance wave-
length may be approximated as lm1

���
8
p

pa. Since lm is

a ®xed value for a given liquid collar, the shape of the
liquid collar varies with changes in its volume.
The stability of a liquid collar is a function of the

area-to-volume ratio Acollar/Vcollar, where Acollar is the
vapor±liquid interface area of the liquid collar. If the
evolution of the liquid collar is assumed to be along a
line of Laplace equilibria, then the following relation-

ship holds: C=@Acollar/@Vcollar, where C is the mean
curvature of the liquid collar. When the volume of the
liquid collar reaches a critical value Vcollar,cr at which

@C/@Vcollar=0 (or @2Acollar/@V
2
collar=0), the liquid collar

becomes unstable (the corresponding capillary instabil-
ity is known as the Laplace instability) and breaks up

into a liquid bridge [26]. Fig. 4 illustrates the develop-
ment of a liquid collar with continuous vapor conden-
sation. If we introduce a pseudo radius acr (in reality,

acr 1 a ) to describe the corresponding `undisturbed
condensate ®lm', then mass conservation leads to
Vcollar,cr=p(r 20ÿa 2

cr)lm. This relationship may be
expressed alternatively as Vcollar,cr=

���
8
p

p2a3cr1�R2
cr ÿ 1�,

where Rcr0r0/acr. Based on the theoretical and exper-
imental studies of [6], Rcr=1.1±1.2. Because a ®lm
thickness with R>1.1 can be reached easily, most of

the liquid collars formed will break up into liquid
bridges. However, because of variations in initial
volumes (due to changes in ®lm thickness with lo-

cations), di�erent bridge widths are possible. This
explains the non-equal-width liquid bridges reported
by [9].

4.3. Mechanism for capillary blocking

Capillary blocking in thermosyphons of various tube

diameters has been investigated by [8]. In their exper-
iments, capillary blocking always occurred in thermo-
syphon condensers of 1- and 3-mm inside diameter

(I.D.) while it took place in a 5-mm I.D. thermosy-
phon condenser only at high condensation heat-trans-
fer rates, i.e., in cases where the condensate ®lm was

thick. For condensers with inside diameters larger than

5 mm, no capillary blocking was observed. According

to the observations of [8], the ®rst liquid bridge formed

commonly in the lower part of a small-diameter-ther-

mosyphon condenser, and then the condensate and the

vapor blocked above the liquid bridge formed a liquid

plug which blocked the dead end of the condenser.

Blocking of the dead end of the condenser with a

liquid plug in¯uences considerably the performance of

the thermosyphon: the liquid plug at the dead end of

the condenser reduces the e�ective length of the con-

denser which makes the condenser not work properly

at the design condition, and, since the amount of the

working ¯uid in circulation becomes much less than

that in the design condition, partial dryout in the evap-

orator of the thermosyphon will be encountered,

which, accordingly, reduces the heat-transport capacity

of the thermosyphon signi®cantly. In an extreme case,

the evaporator may dry out completely [9].

Based on the preceding discussion and capillary

phenomena reported by [8,9] [see Fig. 5(c) and (d)], we

propose a plausible mechanism for capillary blocking

in a small-diameter-thermosyphon condenser as fol-

lows. We assume that initially the two-phase-¯ow pat-

tern in a small-diameter thermosyphon is of the usual

type, i.e., an annular liquid ®lm that covers the entire

tube wall and a vapor core in the center of the tube

[13,14]. Furthermore, we assume that as in normal

working conditions of a heat pipe, only a small

amount of liquid remains at the dead end of the evap-

orator, and that the condensate ®lm is negligibly thin

at the dead end of the condenser. Due to the inter-

facial instability, surface waves form at the vapor±

liquid interface. As we discussed in the preceding, the

unstable waves in the lower part of the condenser

grow faster than those in the upper part; thus, we

assume that the ®rst liquid bridge forms in the lower

part of the condenser, provided that the condensate

®lm is thick enough to induce liquid bridging. Because

growth rates of the disturbance waves also are depen-

dent of the initial disturbance amplitudes which are

distributed randomly on the condensate ®lm, the ®rst

liquid bridge is not always necessary to form at the

exit of the condenser where the maximum ®lm thick-

ness in the thermosyphon is reached. This ®rst liquid

Fig. 4. Development of a condensate collar: time advances from (a)±(d).
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bridge blocks the vapor transport to the condenser and

causes hysteresis in the transport of the condensate to

the evaporator. Because thickness of the condensate

®lm is relatively thin in the space blocked, breakup of

the condensate ®lm results in liquid collars. Most of

these liquid collars are unstable and they further break

up into liquid bridges of various bridge widths.

The liquid bridges cut the vapor blocked into

bubbles. Due to buoyant motion of the bubbles and

the vapor pressure at the bottom vapor±liquid inter-

face of the liquid bridge that causes the blockage, the

liquid bridges move to the dead end of the condenser,

during which the bubbles are condensed and liquid

bridges coalesce to form a liquid plug at the dead end

of the condenser. This process is illustrated in Fig. 5.

The two-phase-¯ow patterns shown in Fig. 5(c) and

(d) agree with those reported by [9]. At some circum-

stances, the rate of condensation heat transfer is low,

and therefore, the condensate ®lm may not be thick

enough to cause liquid bridging in the condenser. In

this case, liquid bridging may occur in the upper part

of the evaporator due largely to a dynamic bridging

mechanism [3±5]. Since the vapor velocity in the evap-

orator is high while in the blocked space the vapor is

almost stagnant, the pressure di�erence over the liquid

bridge formed is Dp=rglbridge+2s(1/rBÿ1/rT)>0,

where rB and rT are the mean radii of the bottom and

top vapor±liquid interfaces, and lbridge is the width of

the liquid bridge. Under this driving force, the liquid

bridge may be pushed into the condenser. This `liquid

pumping' phenomenon may take place periodically

until the liquid ®lm becomes too thin and no liquid

bridges can be formed. In this case most of the liquid

bridges in the condenser may be `pumped' there from

the evaporator. Capillary blocking due to this liquid-

pumping mechanism was observed by [9].

Although capillary blocking is originated from var-

ious capillary instabilities, the force that holds up the

liquid plug at the dead end of the thermosyphon con-

denser is the pressure of the vapor below the liquid

plug because both the gravitational and capillary

forces tend to drive the condensate to ¯ow to the evap-

orator (note that the pressure in the evaporator is

higher than in the condenser in all kinds of heat

pipes). Since the liquid plug is on the top of the vapor,

the vapor±liquid interface forms a typical case of

Taylor instability. However, if the tube diameter is

small enough, the gravitational force becomes negli-

gible in comparison to the capillary force, then the

vapor±liquid interface may be considered to be stable.

This explains why stable capillary blocking occurs only

in small-diameter-thermosyphon condensers.

Capillary blocking also occurs in wickless micro

head pipes [13,14]. Hydrodynamic and capillary

Fig. 5. Formation of liquid blocking: time advances from (a)±(d).
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instabilities in wickless micro heat pipes with a polyg-

onal cross section are very complicated and beyond

the scope of this study. Here we only discuss some

common phenomena in both small-diameter thermosy-

phons and wickless micro heat pipes. Fig. 6 shows

capillary blocking and partial dryout phenomena in

wickless micro heat pipes with trigonal and tetragonal

cross sections. Because of the Gregorig e�ect, capillary

forces in the corners are much larger than those at the

planar surfaces, and thus, the partial-dryout phenom-

enon in a wickless micro heat pipe with a polygonal

cross section is di�erent from that in a small-diameter

thermosyphon: in the former, partial dryout may be

found in the entire evaporator due to the Gregorig

e�ect, the liquid is not uniformly distributed and most

of the planar surfaces could possibly be dry; in the lat-

ter, complete dryout occurs in the dead-end zone of

the evaporator and beyond this zone the tube wall is

wetted completely, i.e., part of the evaporator works in

a normal way.

It should be pointed out that although capillary

blocking usually occurs in the condenser of a wickless

micro heat pipe, it has a small e�ect on the overall

condensational heat transfer because only a small por-

tion of the condenser is blocked with the condensate;

in comparison, it impacts the overall evaporation heat

transfer signi®cantly because a large percentage of the

surface area of the evaporator becomes dry, i.e., two-

phase heat transfer occurs only in part of the surface

of the evaporator. Therefore, capillary blocking has a

signi®cant impact on the heat-transport capacity of

wickless micro heat pipes and small-diameter thermo-

syphons. The dry surface in the evaporator of either a

small-diameter thermosyphon or a wickless micro heat

pipe may be reduced by increasing the ®lling ratio.

However, a large ®lling ratio will not prevent capillary

blocking, and it will reduce the evaporation area of the

evaporator, which, accordingly, will also in¯uence the

heat-transport capacity. In applications of either small-

diameter thermosyphons or wickless micro heat pipes,

their characteristics must be taken into consideration.

For example, how the surfaces of evaporators in con-

Fig. 6. Capillary blocking and partial dryout in two di�erent wickless micro heat pipes.
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tact of the heat source is an important factor because
at the unwetted surfaces of the evaporators heat trans-

fer is of a single-phase type.

5. Summary and conclusions

A characteristic equation describing instability of the
condensate ®lm in a small-diameter-tube condenser
was developed via an integro-di�erential approach.

Instability of the condensate ®lm was analyzed using
the resultant equation. It is found that (1) in the zones
of low relative vapor velocities, the cause of the ®lm
instability is the surface tension and wavelengths of the

disturbances waves are approximately a function of the
radius of the undisturbed inner condensate ®lm, i.e.,
lm1

���
8
p

pa; and (2) in the zones of high relative vapor

velocities, the ®lm instability is induced by the hydro-
dynamic force (due to the di�erence in phase vel-
ocities), and the larger the hydrodynamic force, the

shorter the disturbance wave and the faster they grow.
These predicted characteristics of the disturbance
waves agree with experimental observations and
measurements reported in the literature.

On the basis of the resultant characteristic equation,
the mechanism for capillary blocking that occurs in a
small-diameter-thermosyphon condenser was exam-

ined. Both Rayleigh instability which causes breakup
of the condensate ®lm and Laplace instability which
induces break up of condensate collars into liquid

bridges are found to be responsible for the capillary
phenomena in the condenser. Due to these capillary
instabilities, the condensate ®lm in the condenser

breaks up (directly as well as indirectly) into liquid
bridges which block the vapor ¯ow. Then, because
condensation of the vapor between liquid bridges
induces coalescence of the liquid bridges, and because

the pressure in the evaporator is always higher than
that in the condenser of a thermosyphon, the coalesced
liquid bridges form a liquid plug and this liquid plug is

pushed to the dead end of the condenser, resulting in
capillary blocking. This proposed mechanism explains
the experimental observations reported in the litera-

ture.
Since capillary instabilities that are encountered in

small-diameter-thermosyphon condensers may occur in
other small-channel condensations, and since the press-

ure distributions are similar in all kinds of heat pipes,
capillary blocking may also take place in wickless
micro heat pipes. Due to capillary blocking, the work-

ing ¯uid circulating in a wickless micro heat pipe
becomes much smaller than that at the design con-
dition, which may result in partial dryout in the evap-

orator. Because the majority of the wickless micro heat
pipes have a polygonal cross section, in evaporators of
these micro heat pipes liquid may be accumulated on

the corners and a large percentage of the planar sur-
faces may be dry. The partial-dryout characteristics of

the evaporator must be considered in applications of
the wickless micro heat pipes because no phase change
occurs at the unwetted surfaces of the evaporators.
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